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Outline for Today
• Questions?

• Administrivia
• Lab 3 looms large: Go go go!

• Agenda
• Memory Consistency 

• Message Passing background

• Concurrency in Go

• Thoughts and guidance on Lab 3

• Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it: 
https://talks.golang.org/2012/concurrency.slide
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• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs

• Ordering of reads and writes
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Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs

• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update

• Coherence vs. Consistency? 
• Coherence: ordering of ops. at a single location

• Consistency: ordering of ops. at multiple locations
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Consistency: Canonical Challenge

Initially, Flag1 = Flag2 = 0

P1    P2

Flag1 = 1   Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
  enter CS    enter CS 
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Consistency: Canonical Challenge

Initially, Flag1 = Flag2 = 0

P1    P2

Flag1 = 1   Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
  enter CS    enter CS 

4

Can both P1 and P2 wind up in the 
critical section at the same time?Write Buffers

• P_0 write → queue op in write buffer, proceed
• P_0 read → look in  write buffer, 
• P_(x != 0) read → old value: write buffer hasn’t drained



Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory
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Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order 

• Read returns value of last write
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• Program Order

• Processor’s memory operations must complete in program order
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Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Note: write atomicity → property of schedule: writes appear atomic

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system
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Disadvantages:

• Difficult to implement!
• Coherence to (e.g.) write buffers is hard

• Sacrifices many potential optimizations 
• Hardware (cache) and software (compiler)
• Major performance hit



Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1    P2

Flag1 = 1   Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
  enter CS    enter CS 
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Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1    P2

Flag1 = 1   Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
  enter CS    enter CS 

7

Can both P1 and P2 wind up in the 
critical section at the same time?

In an SC system NO



Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed 

• All  agree on the same interleaving

• Each process preserves its program order
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Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed 

• All  agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”



More Consistency Motivation

Initially, A = B = 0
How many possible final values of register1?

P1  P2   P3

A = 1
  if (A == 1)
    B = 1
     if (B == 1)
       register1 = A
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More Consistency Motivation

Initially, A = B = 0
How many possible final values of register1?

P1  P2   P3

A = 1
  if (A == 1)
    B = 1
     if (B == 1)
       register1 = A

9

Key issue: 
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Sources of re-ordering:
• Post-retirement store queues
• Load queues
• O-o-O instruction processing
• Non-Uniform topologies
• Compiler optimizations

Consistency:
Each “flavor” is some combination of 
allowed/supported optimizations



Why Relax Consistency?
• Motivation, originally

• Allow in-order processors to overlap store latency with other work

• “Other work” depends on loads, so loads bypass stores using a store queue

• PC (processor consistency), SPARC TSO, IBM/370

• Just relax read-to-write program order requirement

• Subsequently

• Hide latency of one store with latency of other stores

• Stores to be performed OOO with respect to each other

• Breaks SC even further

• This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium

• What’s the problem with relaxed consistency?

• Shared memory programs can break if not written for specific cons. model
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static inline void arch_write_lock(arch_rwlock_t *rw) { 
   asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t" 
       "jz 1f\n" 
         "call __write_lock_failed\n\t" 
        "1:\n" 
        ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); } 

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
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• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock) 
{
  unsigned long tmp, token;
  token = LOCK_TOKEN; 
  __asm__ __volatile__(
    "1: "  PPC_LWARX(%0,0,%2,1) "\n\
           cmpwi 0,%0,0\n\
           bne- 2f\n\  
           stwcx. %1,0,%2\n\
           bne- 1b\n"
           PPC_ACQUIRE_BARRIER
    "2:“ : "=&r" (tmp)
         : "r" (token), "r" (&lock->slock)
         : "cr0", "memory");
    return tmp;
} PowerPC
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Some Key Consistency Models
TSO: Total Store Order

• Stores are totally ordered, reads not

• Differs from PC by allowing early reads of processor’s own writes

PC: Processor consistency

• Writes from processor always respect program order

• Different processors may see different interleavings from different processors

RC: Release Consistency

• Key insight: only synchronization references need to be ordered

• Hence, relax memory for all other references
• Enable high-performance OOO implementation

• Programmer labels synchronization references
• Hardware must carefully order these labeled references

• Labeling schemes:
• Explicit synchronization ops (acquire/release)
• Memory fence or memory barrier ops:

• All preceding ops must finish before following ones begin



Another Good SC Exercise

P0:
1. x = 1;
2. y = 1;

Initially, x = 0, y = 0

P1:
1. a = y;
2. b = x;

What final values of (a, b) are possible under SC? 



Another Good SC Exercise

P0:
1. x = 1;
2. y = 1;

Initially, x = 0, y = 0

P1:
1. a = y;
2. b = x;

What final values of (a, b) are possible under SC? 

(0, 0), (0, 1), (1, 1)

Not 1, 0 
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different processors

• Key idea: 
• reflect reality of networks 

• latency between nodes may be different
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PC: Processor Consistency
• Writes from a single processor are received by all other processors in 

the order they were issued

• Writes from different processors may be seen in a different order by 
different processors

• Key idea: 
• reflect reality of networks 

• latency between nodes may be different

P0

P1

P2

P3

1. P1 sees P0’s writes in P0 order
2. P1 sees P2’s writes in P2 order
3. Same for P3
4. P3 may see different 

interleavings of P0, P2 writes 
than P1 observes

W: a, b, c W: d, e, f

R: a, b, c, d, e, f R: d, e, f, a, b, c



PC Example



PC Example

• How many different outputs from P3
• For SC?

• For PC?



PC Example

• How many different outputs from P3
• For SC?

• For PC?

PC Implementation:
• Store Queues Drain in Order
• Loads check Store Queue to 

“read own writes”
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WO: Weak Ordering

• Instructions are either “data” or “sync”

• reordering reads and writes between sync ops ok

• Sync ops must be SC

• Implementation:
• Use counters for outstanding ops

• Counter must be zero for sync to issue

• No ops can issue until previous sync retires



RC: Release Consistency

• Extends WO to richer taxonomy of sync and non-sync ops

• Two flavors:
• RCsc → special operations must be SC

• RCpc → special operations must be PC



Understanding How “Safety Nets” Work

• Post—wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;



Understanding How “Safety Nets” Work

• Post—wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

• In SC, this “just works”
• In PC, this works for 2 

processors
• In WO, RC, this requires fences
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WO: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.SYNC &dataReady, 1

P1:
1. L: ld.SYNC R1, &dataReady
2.     sub R1, #1
3.     bnz R1, L
4.  ld R2, &x

  

• SYNC is a fence: 
• all previous memory ops complete before SYNC
• No subsequent memory ops issue until after SYNC

Does SYNC require communication with other processors?

No. SYNC ensures no one can see W(dataReady) -> W(x) by 
forcing st &x to complete before st &dataReady issues



RC: Post-wait synchronization
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RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2.     sub R1, #1
3.     bnz R1, L
4.  ld R2, &x

  

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

Does acq/rel require communication with other processors?

No. rel ensures no one can see W(dataReady) -> W(x)

Why do we need ld.acq on P1.1? 

So that P1.4 can’t execute before P1.1 completes
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Exercise: SP-SC Queue

next(x): 
    if(x == Q_size-1) return 0;
    else return x+1;

Q_get(data):   Q_put(data):
    t = Q_tail;       h = Q_head;
    while(t == Q_head)      while(next(h) == Q_tail)
 ;             ;
    data = Q_buf[t];      Q_buf[h] = data;
    Q_tail = next(t);      Q_head = next(h);



Exercise: SP-SC Queue

next(x): 
    if(x == Q_size-1) return 0;
    else return x+1;

Q_get(data):   Q_put(data):
    t = Q_tail;       h = Q_head;
    while(t == Q_head)      while(next(h) == Q_tail)
 ;             ;
    data = Q_buf[t];      Q_buf[h] = data;
    Q_tail = next(t);      Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get 
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires ??? before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”



Questions?
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